DeepSeek又拿第一!首创“因果流”视觉推理超越Gemini
【新智元导读】DeepSeek开源DeepSeek-OCR2,引入了全新的DeepEncoder V2视觉编码器。该架构打破了传统模型按固定顺序(从左上到右下)扫描图像的限制,转而模仿人类视觉的「因果流(Causal Flow)」逻辑。
这一次,DeepSeek更进一步,对视觉编码器下手了,提出了一种全新的DeepEncoder V2架构,实现了视觉编码从「固定扫描」向「语义推理」的范式转变!
DeepSeek-OCR2不仅能像人类一样按逻辑顺序阅读复杂文档,还在多项基准测试中刷新了SOTA。
这就像是给机器装上了「人类的阅读逻辑」,让AI不再只是死板地从左上到右下扫描图像,而是能根据内容语义灵活调整阅读顺序。
DeepSeek在论文中指出,传统的视觉语言模型(VLM)通常采用光栅扫描(Raster-Scan)顺序处理图像,即固定地从左到右、从上到下。
人类在看图或阅读文档时,目光是随着逻辑流动的:先看标题,再看正文,遇到表格会按列或按行扫视,遇到分栏会自动跳跃。
它最大的特点是用一个轻量级的大语言模型(Qwen2-0.5B)替换了原本的CLIP编码器,并设计了一种独特的「因果流查询」(Causal Flow Query)机制。
沿用了SAM-base(80M参数)加卷积层的设计,将图像转换为视觉Token。
它不仅处理视觉Token,还引入了一组可学习的「查询Token」(Query Tokens)。
编码器通过可学习的查询对视觉Token进行语义重排,随后的LLM解码器则在这个有序序列上进行自回归推理。
这意味着,DeepSeek-OCR2在编码阶段就已经把图像里的信息「理顺」了,而不是一股脑地扔给解码器。
实验数据显示,DeepSeek-OCR2在保持极高压缩率的同时,性能显著提升。
DeepSeek披露,在处理在线用户日志图像时,OCR结果的重复率从6.25%降到了4.17%;在PDF数据生产场景中,重复率从3.69%降到了2.88%。
这意味着模型生成的文本更加干净、准确,对于作为LLM训练数据的清洗流水线来说,价值巨大。
这不仅是一个OCR模型的升级,更是迈向原生多模态(Native Multimodality)的重要一步。
未来,同一个编码器只要配备不同的模态查询嵌入(Query Embeddings),就能处理文本、图片、音频等多种模态的数据,真正实现万物皆可Token,万物皆可因果推理。
DeepSeek表示,虽然目前光学文本识别(OCR)是LLM时代最实用的视觉任务之一,但这只是视觉理解宏大图景的一小部分。
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。




